Red pigment concentrating hormone strongly enhances the strength of the feedback to the pyloric rhythm oscillator but has little effect on pyloric rhythm period.
نویسندگان
چکیده
The neuropeptide, red pigment concentrating hormone (RPCH), strengthened the inhibitory synapse from the lateral pyloric (LP) neuron to the pyloric dilator (PD) neurons in the pyloric network of the stomatogastric ganglion (STG) of the lobster, Homarus americanus. RPCH produced several-fold increases in the amplitude of both action potential-mediated and non-impulse-mediated transmission that persisted for as long as the peptide remained present. Because the LP to PD synapse is the only feedback to the pacemaker kernel of the pyloric network, which consists of the electrically coupled two PD neurons and the anterior burster (AB) neuron, it might have been expected that strengthening the LP to PD synapse would increase the period of the pyloric rhythm. However, the period of the pyloric rhythm increased only transiently in RPCH, and a transient increase in cycle period was observed even when the LP neuron was hyperpolarized. Phase response curves were measured using the dynamic clamp to create artificial inhibitory inputs of variable strength and duration to the PD neurons. Synaptic conductance values seen in normal saline were ineffective at changing the pyloric period throughout the pyloric cycle. Conductances similar to those seen in 10(-6) M RPCH also did not evoke phase resets at phases when the LP neuron is typically active. Thus the dramatic effects of RPCH on synaptic strength have little role in modulation of the period of the pyloric rhythm under normal operating conditions but may help to stabilize the rhythm when the cycle period is too slow or too fast.
منابع مشابه
Adam L . Weaver and Scott L . Hooper Complementary Ways Pyloric Network Regulate Pacemaker Period in ) Panulirus interruptusFollower Neurons in
[PDF] [Full Text] [Abstract] , October 1, 2003; 90 (4): 2378-2386. J Neurophysiol A. L. Weaver and S. L. Hooper interruptus) Pyloric Network Relating Network Synaptic Connectivity and Network Activity in the Lobster (Panulirus [PDF] [Full Text] [Abstract] , June 2, 2004; 24 (22): 5140-5150. J. Neurosci. A. Mamiya and F. Nadim Synapses Acts to Stabilize the Rhythm Period Dynamic Interaction ...
متن کاملA Neuronal Role for a Crustacean Red Pigment Concentrating Hormone-like Peptide: Neuromodulation of the Pyloric Rhythm in the Crab, Cancer Borealis
The distribution of red pigment concentrating hormone (RPCH)-like immunoreactivity (RPLI) in the stomatogastric nervous system of the crab, Cancer borealis, was studied using whole-mount immunocytochemistry. RPLI was seen in neuropilar processes in the stomatogastric ganglion (STG), and in somata in the oesophageal ganglion and commissural ganglia. Staining was blocked by preincubating the anti...
متن کاملThe pyloric neural circuit of the herbivorous crab Pugettia producta shows limited sensitivity to several neuromodulators that elicit robust effects in more opportunistically feeding decapods.
Modulation of neural circuits in the crustacean stomatogastric nervous system (STNS) allows flexibility in the movements of the foregut musculature. The extensive repertoire of such resulting motor patterns in dietary generalists is hypothesized to permit these animals to process varied foods. The foregut and STNS of Pugettia producta are similar to those of other decapods, but its diet is more...
متن کاملRCPH modulation of a multi-oscillator network: effects on the pyloric network of the spiny lobster.
The neuropeptide red pigment concentrating hormone (RPCH), which we have previously shown to activate the cardiac sac motor pattern and lead to a conjoint gastric mill-cardiac sac pattern in the spiny lobster Panulirus, also activates and modulates the pyloric pattern. Like the activity of gastric mill neurons in RPCH, the pattern of activity in the pyloric neurons is considerably more complex ...
متن کاملSynaptic depression creates a switch that controls the frequency of an oscillatory circuit.
Synaptic depression is a form of short-term plasticity exhibited by many synapses. Nonetheless, the functional significance of synaptic depression in oscillatory networks is not well understood. We show that, in a recurrent inhibitory network that includes an intrinsic oscillator, synaptic depression can give rise to two distinct modes of network operation. When the maximal conductance of the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 95 3 شماره
صفحات -
تاریخ انتشار 2006